docker网络
安装Docker时,它会自动创建三个网络,bridge(创建容器默认连接到此网络)、 none 、host
网络模式 | 简介 |
---|---|
Host | 容器将不会虚拟出自己的网卡,配置自己的IP等,而是使用宿主机的IP和端口。 |
Bridge | 此模式会为每一个容器分配、设置IP等,并将容器连接到一个docker0虚拟网桥,通过docker0网桥以及Iptables nat表配置与宿主机通信。 |
None | 该模式关闭了容器的网络功能。 |
Container | 创建的容器不会创建自己的网卡,配置自己的IP,而是和一个指定的容器共享IP、端口范围。 |
自定义网络 | 略 |
一、默认网络
当你安装Docker时,它会自动创建三个网络。你可以使用以下docker network ls命令列出这些网络:
[root@server1 ~]# docker network ls
NETWORK ID NAME DRIVER SCOPE
0147b8d16c64 bridge bridge local
2da931af3f0b host host local
63d31338bcd9 none null local
Docker内置这三个网络,运行容器时,你可以使用该--network
标志来指定容器应连接到哪些网络。
该bridge网络代表docker0所有Docker安装中存在的网络。除非你使用该docker run --network=选项
指定,否则Docker守护程序默认将容器连接到此网络。
我们在使用docker run创建Docker容器时,可以用 --net
选项指定容器的网络模式,Docker可以有以下4种网络模式:
- host模式:使用 –net=host 指定。
- none模式:使用 –net=none 指定。
- bridge模式:使用 –net=bridge 指定,默认设置。
- container模式:使用 –net=container:NAME_or_ID 指定。
下面分别介绍一下Docker的各个网络模式。
1.1 Host模式
相当于Vmware中的桥接模式,与宿主机在同一个网络中,但没有独立IP地址。
众所周知,Docker使用了Linux的Namespaces技术来进行资源隔离,如PID Namespace隔离进程,Mount Namespace隔离文件系统,Network Namespace隔离网络等。
一个Network Namespace提供了一份独立的网络环境,包括网卡、路由、Iptable规则等都与其他的Network Namespace隔离。一个Docker容器一般会分配一个独立的Network Namespace。但如果启动容器的时候使用host模式,那么这个容器将不会获得一个独立的Network Namespace,而是和宿主机共用一个Network Namespace。容器将不会虚拟出自己的网卡,配置自己的IP等,而是使用宿主机的IP和端口。
例如,我们在172.25.6.1/24的机器上用host模式启动一个ubuntu容器
[root@server1 ~]# docker run -it --network=host ubuntu
可以看到,容器的网络使用的时宿主机的网络,但是,容器的其他方面,如文件系统、进程列表等还是和宿主机隔离的。
1.2 Container模式
在理解了host模式后,这个模式也就好理解了。这个模式指定新创建的容器和已经存在的一个容器共享一个Network Namespace,而不是和宿主机共享。新创建的容器不会创建自己的网卡,配置自己的IP,而是和一个指定的容器共享IP、端口范围等。同样,两个容器除了网络方面,其他的如文件系统、进程列表等还是隔离的。两个容器的进程可以通过lo网卡设备通信。
1.3 None模式
该模式将容器放置在它自己的网络栈中,但是并不进行任何配置。实际上,该模式关闭了容器的网络功能,在以下两种情况下是有用的:容器并不需要网络(例如只需要写磁盘卷的批处理任务)。
在docker1.7代码进行了重构,单独把网络部分独立出来编写,所以在docker1.8新加入的一个overlay网络模式。Docker对于网络访问的控制也是在逐渐完善的。
1.4 Bridge模式
相当于Vmware中的Nat模式,容器使用独立network Namespace,并连接到docker0虚拟网卡(默认模式)。通过docker0网桥以及Iptables nat表配置与宿主机通信;bridge模式是Docker默认的网络设置,此模式会为每一个容器分配Network Namespace、设置IP等,并将一个主机上的Docker容器连接到一个虚拟网桥上。下面着重介绍一下此模式。
二、Bridge模式
执行ifconfig
命令查看docker0的虚拟网桥。
2.1 Bridge模式的拓扑
当Docker server启动时,会在主机上创建一个名为docker0的虚拟网桥,此主机上启动的Docker容器会连接到这个虚拟网桥上。虚拟网桥的工作方式和物理交换机类似,这样主机上的所有容器就通过交换机连在了一个二层网络中。接下来就要为容器分配IP了,Docker会从RFC1918所定义的私有IP网段中,选择一个和宿主机不同的IP地址和子网分配给docker0,连接到docker0的容器就从这个子网中选择一个未占用的IP使用。
如一般Docker会使用172.17.0.0/16这个网段,并将172.17.0.1/16分配给docker0网桥(在主机上使用ifconfig命令是可以看到docker0的,可以认为它是网桥的管理接口,在宿主机上作为一块虚拟网卡使用)。单机环境下的网络拓扑如下,主机地址为10.10.0.186/24。
2.2 Docker:网络模式详解
Docker完成以上网络配置的过程大致是这样的:
(1)在主机上创建一对虚拟网卡veth pair设备。veth设备总是成对出现的,它们组成了一个数据的通道,数据从一个设备进入,就会从另一个设备出来。因此,veth设备常用来连接两个网络设备。
(2)Docker将veth pair设备的一端放在新创建的容器中,并命名为eth0。另一端放在主机中,以veth65f9这样类似的名字命名,并将这个网络设备加入到docker0网桥中,可以通过brctl show
命令查看。
brctl show
bridge name bridge id STP enabled interfaces
docker0 8000.02425f21c208 no
(3)从docker0子网中分配一个IP给容器使用,并设置docker0的IP地址为容器的默认网关。
# 运行容器
[root@server1 ~]# docker run --name=nginx_bridge --net=bridge -p 80:80 -d nginx
9582dbec7981085ab1f159edcc4bf35e2ee8d5a03984d214bce32a30eab4921a
# 查看容器
[root@server1 ~]# docker ps
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
9582dbec7981 nginx "nginx -g 'daemon ..." 3 seconds ago Up 2 seconds 0.0.0.0:80->80/tcp nginx_bridge
# 查看容器网络;
[root@server1 ~]# docker inspect 9582dbec7981
"Networks": {
"bridge": {
"IPAMConfig": null,
"Links": null,
"Aliases": null,
"NetworkID": "9e017f5d4724039f24acc8aec634c8d2af3a9024f67585fce0a0d2b3cb470059",
"EndpointID": "81b94c1b57de26f9c6690942cd78689041d6c27a564e079d7b1f603ecc104b3b",
"Gateway": "172.17.0.1",
"IPAddress": "172.17.0.2",
"IPPrefixLen": 16,
"IPv6Gateway": "",
"GlobalIPv6Address": "",
"GlobalIPv6PrefixLen": 0,
"MacAddress": "02:42:ac:11:00:02"
}
}
# 查看网桥信息,会看到有有一个容器
[root@server1 ~]# docker network inspect bridge
[
{
"Name": "bridge",
"Id": "9e017f5d4724039f24acc8aec634c8d2af3a9024f67585fce0a0d2b3cb470059",
"Created": "2019-06-09T23:20:28.061678042-04:00",
"Scope": "local",
"Driver": "bridge",
"EnableIPv6": false,
"IPAM": {
"Driver": "default",
"Options": null,
"Config": [
{
"Subnet": "172.17.0.0/16"
}
]
},
"Internal": false,
"Attachable": false,
"Ingress": false,
"Containers": {
"9582dbec7981085ab1f159edcc4bf35e2ee8d5a03984d214bce32a30eab4921a": {
"Name": "nginx_bridge",
"EndpointID": "81b94c1b57de26f9c6690942cd78689041d6c27a564e079d7b1f603ecc104b3b",
"MacAddress": "02:42:ac:11:00:02",
"IPv4Address": "172.17.0.2/16",
"IPv6Address": ""
}
},
"Options": {
"com.docker.network.bridge.default_bridge": "true",
"com.docker.network.bridge.enable_icc": "true",
"com.docker.network.bridge.enable_ip_masquerade": "true",
"com.docker.network.bridge.host_binding_ipv4": "0.0.0.0",
"com.docker.network.bridge.name": "docker0",
"com.docker.network.driver.mtu": "1500"
},
"Labels": {}
}
]
2.3 bridge模式下容器的通信
在bridge模式下,连在同一网桥上的容器可以相互通信(若出于安全考虑,也可以禁止它们之间通信,方法是在DOCKER_OPTS变量中设置--icc=false
,这样只有使用--link
才能使两个容器通信)。
Docker可以开启容器间通信(意味着默认配置--icc=false
),也就是说,宿主机上的所有容器可以不受任何限制地相互通信,这可能导致拒绝服务攻击。进一步地,Docker可以通过--ip_forward
和--iptables
两个选项控制容器间、容器和外部世界的通信。
容器也可以与外部通信,我们看一下主机上的Iptable规则,可以看到这么一条
-A POSTROUTING -s 172.17.0.0/16 ! -o docker0 -j MASQUERADE
这条规则会将源地址为172.17.0.0/16的包(也就是从Docker容器产生的包),并且不是从docker0网卡发出的,进行源地址转换,转换成主机网卡的地址。这么说可能不太好理解,举一个例子说明一下。假设主机有一块网卡为eth0,IP地址为10.10.101.105/24,网关为10.10.101.254。从主机上一个IP为172.17.0.1/16的容器中ping百度(180.76.3.151)。IP包首先从容器发往自己的默认网关docker0,包到达docker0后,也就到达了主机上。然后会查询主机的路由表,发现包应该从主机的eth0发往主机的网关10.10.105.254/24。接着包会转发给eth0,并从eth0发出去(主机的ip_forward转发应该已经打开)。这时候,上面的Iptable规则就会起作用,对包做SNAT转换,将源地址换为eth0的地址。这样,在外界看来,这个包就是从10.10.101.105上发出来的,Docker容器对外是不可见的。
那么,外面的机器是如何访问Docker容器的服务呢?我们首先用下面命令创建一个含有web应用的容器,将容器的80端口映射到主机的80端口。
docker run --name=nginx_bridge --net=bridge -p 80:80 -d nginx
然后查看Iptable规则的变化,发现多了这样一条规则:
-A DOCKER ! -i docker0 -p tcp -m tcp --dport 80 -j DNAT --to-destination 172.17.0.2:80
此条规则就是对主机eth0收到的目的端口为80的tcp流量进行DNAT转换,将流量发往172.17.0.2:80,也就是我们上面创建的Docker容器。所以,外界只需访问10.10.101.105:80就可以访问到容器中的服务。
除此之外,我们还可以自定义Docker使用的IP地址、DNS等信息,甚至使用自己定义的网桥,但是其工作方式还是一样的。
三、容器互联
我们还是通过一些小实验来理解和感受 Bridge Network。与上一节不同的是,我们将使用 Alpine Linux 镜像作为实验原材料,因为:
- 非常轻量小巧(整个镜像仅 5MB 左右)
- 功能丰富,比“瑞士军刀” Busybox 还要完善
网桥网络可分为两类:
- 默认网络(Docker 运行时自带,不推荐用于生产环境)
- 自定义网络(推荐使用)
让我们分别实践一下吧。
3.1 默认网络
我们会在默认的 bridge
网络上连接两个容器 alpine1
和 alpine2
。 运行以下命令,查看当前已有的网络:
docker network ls
应该会看到以下输出(注意你机器上的 ID 很有可能不一样):
NETWORK ID NAME DRIVER SCOPE
cb33efa4d163 bridge bridge local
010deedec029 host host local
772a7a450223 none null local
这三个默认网络分别对应上面的 bridge
、host
和 none
网络类型。接下来我们将创建两个容器,分别名为 alpine1
和 alpine2
,命令如下:
docker run -dit --name alpine1 alpine
docker run -dit --name alpine2 alpine
-dit
是 -d
(后台模式)、-i
(交互模式)和 -t
(虚拟终端)三个选项的合并。通过这个组合,我们可以让容器保持在后台运行而不会退出(没错,相当于是在“空转”)。
用 docker ps
命令确定以上两个容器均在后台运行:
CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
501559d2fab7 alpine "/bin/sh" 2 seconds ago Up 1 second alpine2
18bed3178732 alpine "/bin/sh" 3 seconds ago Up 2 seconds alpine1
通过以下命令查看默认的 bridge
网络的详情:
docker network inspect bridge
应该会输出 JSON 格式的网络详细数据:
[
{
"Name": "bridge",
"Id": "cb33efa4d163adaa61d6b80c9425979650d27a0974e6d6b5cd89fd743d64a44c",
"Created": "2020-01-08T07:29:11.102566065Z",
"Scope": "local",
"Driver": "bridge",
"EnableIPv6": false,
"IPAM": {
"Driver": "default",
"Options": null,
"Config": [
{
"Subnet": "172.17.0.0/16",
"Gateway": "172.17.0.1"
}
]
},
"Internal": false,
"Attachable": false,
"Ingress": false,
"ConfigFrom": {
"Network": ""
},
"ConfigOnly": false,
"Containers": {
"18bed3178732b5c7a37d7ad820c111fac72a6b0f47844401d60a18690bd37ee5": {
"Name": "alpine1",
"EndpointID": "9c7d8ee9cbd017c6bbdfc023397b23a4ce112e4957a0cfa445fd7f19105cc5a6",
"MacAddress": "02:42:ac:11:00:02",
"IPv4Address": "172.17.0.2/16",
"IPv6Address": ""
},
"501559d2fab736812c0cf181ed6a0b2ee43ce8116df9efbb747c8443bc665b03": {
"Name": "alpine2",
"EndpointID": "da192d61e4b2df039023446830bf477cc5a9a026d32938cb4a350a82fea5b163",
"MacAddress": "02:42:ac:11:00:03",
"IPv4Address": "172.17.0.3/16",
"IPv6Address": ""
}
},
"Options": {
"com.docker.network.bridge.default_bridge": "true",
"com.docker.network.bridge.enable_icc": "true",
"com.docker.network.bridge.enable_ip_masquerade": "true",
"com.docker.network.bridge.host_binding_ipv4": "0.0.0.0",
"com.docker.network.bridge.name": "docker0",
"com.docker.network.driver.mtu": "1500"
},
"Labels": {}
}
]
我们重点要关注的是两个字段:
IPAM
:IP 地址管理信息(IP Address Management),可以看到网关地址为172.17.0.1
(由于篇幅有限,想要了解网关的同学可自行查阅计算机网络以及 TCP/IP 协议方面的资料)Containers
:包括此网络上连接的所有容器,可以看到我们刚刚创建的alpine1
和alpine2
,它们的 IP 地址分别为172.17.0.2
和172.17.0.3
(后面的/16
是子网掩码,暂时不用考虑)
提示
如果你熟悉 Go 模板语法,可以通过
-f
(format
)参数过滤掉不需要的信息。例如我们只想查看bridge
的网关地址:$ docker network inspect --format '{{json .IPAM.Config }}' bridge [{"Subnet":"172.17.0.0/16","Gateway":"172.17.0.1"}]
让我们进入 alpine1
容器中:
docker attach alpine1
注意
attach
命令只能进入设置了交互式运行的容器(也就是在启动时加了-i
参数)。
如果你看到前面的命令提示符变成 / #
,说明我们已经身处容器之中了。我们通过 ping
命令测试一下网络连接情况,首先 ping 一波图雀社区的主站 tuture.co(-c
参数代表发送数据包的数量,这里我们设为 5):
/ # ping -c 5 tuture.co
PING tuture.co (150.109.19.98): 56 data bytes
64 bytes from 150.109.19.98: seq=2 ttl=37 time=65.294 ms
64 bytes from 150.109.19.98: seq=3 ttl=37 time=65.425 ms
64 bytes from 150.109.19.98: seq=4 ttl=37 time=65.332 ms
--- tuture.co ping statistics ---
5 packets transmitted, 3 packets received, 40% packet loss
round-trip min/avg/max = 65.294/65.350/65.425 ms
OK,虽然丢了几个包,但是可以连上(取决于你的网络环境,全丢包也是正常的)。由此可见,容器内可以访问主机所连接的全部网络(包括 localhost)。
接下来测试能否连接到 alpine2
,在刚才 docker network inspect
命令的输出中找到 alpine2
的 IP 为 172.17.0.3
,尝试能否 ping 通:
/ # ping -c 5 172.17.0.3
PING 172.17.0.3 (172.17.0.3): 56 data bytes
64 bytes from 172.17.0.3: seq=0 ttl=64 time=0.147 ms
64 bytes from 172.17.0.3: seq=1 ttl=64 time=0.103 ms
64 bytes from 172.17.0.3: seq=2 ttl=64 time=0.102 ms
64 bytes from 172.17.0.3: seq=3 ttl=64 time=0.125 ms
64 bytes from 172.17.0.3: seq=4 ttl=64 time=0.125 ms
--- 172.17.0.3 ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max = 0.102/0.120/0.147 ms
完美!我们能够从 alpine1
中访问 alpine2
容器。作为练习,你可以自己尝试一下能否从 alpine2
容器中 ping 通 alpine1
哦。
注意
如果你不想让
alpine1
停下来,记得通过 Ctrl + P + Ctrl + Q(按住 Ctrl,然后依次按 P 和 Q 键)“脱离”(detach,也就是刚才attach
命令的反义词)容器,而不是按 Ctrl + D 哦。
3.2 自定义网络
如果你跟着上面一路试下来,会发现默认的 bridge 网络存在一个很大的问题:只能通过 IP 地址相互访问。这毫无疑问是非常麻烦的,当容器数量很多的时候难以管理,而且每次的 IP 都可能发生变化。
而自定义网络则很好地解决了这一问题。在同一个自定义网络中,每个容器能够通过彼此的名称相互通信,因为 Docker 为我们搞定了 DNS 解析工作,这种机制被称为服务发现(Service Discovery)。具体而言,我们将创建一个自定义网络 my-net
,并创建 alpine3
和 alpine4
两个容器,连上 my-net
,如下图所示。
让我们开始动手吧。首先创建自定义网络 my-net
:
docker network create my-net
# 由于默认网络驱动为 bridge,因此相当于以下命令
# docker network create --driver bridge my-net
查看当前所有的网络:
docker network ls
可以看到刚刚创建的 my-net
:
NETWORK ID NAME DRIVER SCOPE
cb33efa4d163 bridge bridge local
010deedec029 host host local
feb13b480be6 my-net bridge local
772a7a450223 none null local
创建两个新的容器 alpine3
和 alpine4
:
docker run -dit --name alpine3 --network my-net alpine
docker run -dit --name alpine4 --network my-net alpine
可以看到,我们通过 --network
参数指定容器想要连接的网络(也就是刚才创建的 my-net
)。
提示
如果在一开始创建并运行容器时忘记指定网络,那么下次再想指定网络时,可以通过
docker network connect
命令再次连上(第一个参数是网络名称my-net
,第二个是需要连接的容器alpine3
):docker network connect my-net alpine3
进入到 alpine3
中,测试能否 ping 通 alpine4
:
$ docker attach alpine3
/ # ping -c 5 alpine4
PING alpine4 (172.19.0.3): 56 data bytes
64 bytes from 172.19.0.3: seq=0 ttl=64 time=0.247 ms
64 bytes from 172.19.0.3: seq=1 ttl=64 time=0.176 ms
64 bytes from 172.19.0.3: seq=2 ttl=64 time=0.180 ms
64 bytes from 172.19.0.3: seq=3 ttl=64 time=0.176 ms
64 bytes from 172.19.0.3: seq=4 ttl=64 time=0.161 ms
--- alpine4 ping statistics ---
5 packets transmitted, 5 packets received, 0% packet loss
round-trip min/avg/max = 0.161/0.188/0.247 ms
可以看到 alpine4
被自动解析成了 172.19.0.3
。我们可以通过 docker network inspect
来验证一下:
$ docker network inspect --format '{{range .Containers}}{{.Name}}: {{.IPv4Address}} {{end}}' my-net
alpine4: 172.19.0.3/16 alpine3: 172.19.0.2/16
可以看到 alpine4
的 IP 的确为 172.19.0.3
,解析是正确的!